Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Akihiro Orita, ${ }^{\text {a }}$ Lasheng Jiang, ${ }^{\text {a }}$ Fangguo Ye, ${ }^{\text {a }}$ Nobuyuki Imai, ${ }^{\text {a }}$ Haruo Akashi ${ }^{\text {b }}$ and Junzo Otera ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan, and ${ }^{\mathbf{b}}$ Research Institute of Natural Sciences, Okayama University of Science, Ridai-cho, Okayama 700-0005, Japan

Correspondence e-mail: otera@high.ous.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.090$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexacarbonyldicobalt(0) complex of 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene, $\left[\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{16} \mathrm{H}_{8}\right) \mathrm{Co}_{2}(\mathrm{CO})_{6}\right]$

The title compound, $\left[\left(\eta^{2}-\mathrm{C}_{16} \mathrm{H}_{8}\right) \mathrm{Co}_{2}(\mathrm{CO})_{6}\right]$, (I), has been prepared by treatment of 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene, (II), with dicobalt octacarbonyl. Although one acetylene in (II) remains intact upon treatment with $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, the other is coordinated to $\mathrm{Co}_{2}(\mathrm{CO})_{6}$, exhibiting a $\mathrm{C} \equiv \mathrm{C}$ bond lengthened to 1.356 (2) \AA and a $\mathrm{C} \equiv \mathrm{C}-\mathrm{C}$ bond angle contracted to $147.53(16)^{\circ}$.

Comment

It has been recognized that 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene, (II), contains the most strained acetylene groups (Destro et al., 1975). Although these triple bonds are quite reactive because of their great strain energy, only one example of Pt complexed to the triple bonds has been reported so far (Shimada et al., 1997). We have developed a new methodology for access to various acetylenes and succeeded in preparing a $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complex of an acetylenic cyclophane (Orita et al., 2002). We have been intrigued by the structural features of $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complexes of the most strained acetylene 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene, (II), and have carried out an investigation of the title compound, (I).

(I)

(II)

By X-ray analysis of the starting cyclophane (II), it has been shown that the triple bonds adopt a bond length of 1.195 (2) \AA and a bond angle of 155.3 (1) ${ }^{\circ}$ (Destro et al., 1975). Coordination of the $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ moiety by the acetylene of (I) lengthens the $\mathrm{C} 1-\mathrm{C} 2$ bond to 1.356 (2) \AA and contracts the bond angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ to $147.53(16)^{\circ}$. In sharp contrast to these, the corresponding length and angle of the other acetylene group in (I) remain unchanged, with the same bond length $\left[1.196(2) \AA\right.$] and angle $\left[155.98(18)^{\circ}\right]$ as observed in (II). Interestingly, the lengths of the $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{C} 16$ bonds are almost the same as in the $\left(\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)-$ $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ complex (Gregson \& Howard, 1983). The bond angle $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\left[147.53(16)^{\circ}\right]$ is somewhat larger than the corresponding angle $\left[140.2(9)^{\circ}\right]$ in diphenylacetylene$\mathrm{Co}_{2}(\mathrm{CO})_{6}$. Two cobalt atoms, Co 1 and Co 2 , are located at the same distance from C 1 and C 2 , but unsymmetrically displaced from the plane involving the eight-membered ring [Co1$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=154.1(4)^{\circ}$ and $\mathrm{Co} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3=$ $\left.-122.5(4)^{\circ}\right]$.

Received 7 October 2002

Accepted 15 November 2002 Online 30 November 2002

Figure 1
Molecular structure of (I). Displacement ellipsoids are drawn at the 50\% probability level.

Experimental

To a flame-dried flask were added (II) ($100.1 \mathrm{mg}, 0.5 \mathrm{mmol}$), and $\mathrm{Co}_{2}(\mathrm{CO})_{8}(512.9 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$; the mixture was stirred for 12 h at room temperature in the dark. After evaporation, hexane was added to the residual black solid and the resulting solution was filtered through a thin layer of silica gel. After evaporation of the filtrate, black crystals of (I) were obtained in 5060\% yield.

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{8}\right)(\mathrm{CO})_{6}\right]$
$M_{r}=486.17$
Monoclinic, $P 2_{1} / c$
$a=16.2876$ (8) \AA
$b=7.4552$ (4) A
$c=17.1415(5) \AA$
$\beta=117.075$ (3) ${ }^{\circ}$
$V=1853.34(15) \AA^{3}$
$Z=4$
$D_{x}=1.742 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 8782
\quad reflections
$\theta=4.0-27.5^{\circ}$
$\mu=1.83 \mathrm{~mm}^{-1}$
$T=93.1 \mathrm{~K}$
Cuboid, black
$0.30 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection
Rigaku RAXIS-IV diffractometer ω scans
Absorption correction: multi-scan (Higashi, 1995)
$T_{\text {min }}=0.471, T_{\text {max }}=0.694$
14932 measured reflections
4379 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.090$
$S=0.99$
4090 reflections
279 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Co1-Co2	2.4616 (3)	Co2-C20	1.8331 (18)
Co1-C1	1.9564 (17)	Co2-C1	1.9719 (16)
Co1-C2	1.9626 (16)	Co2-C2	1.9903 (18)
C1-C2	1.356 (2)	Co2-C22	1.8297 (18)
C2-C3	1.474 (2)	O2-C18	1.135 (2)
C8-C9	1.434 (2)	O1-C17	1.131 (2)
C9-C10	1.196 (2)	O3-C19	1.135 (2)
Co1-C19	1.8196 (19)	C8-C3	1.420 (2)
Co1-C18	1.8101 (19)	C10-C11	1.434 (2)
Co1-C17	1.8122 (18)	C1-C16	1.471 (2)
Co2-C21	1.7942 (19)	C11-C16	1.417 (2)
C1-C2-C3	147.53 (16)	Co2-C1-C2	70.7 (1)
C2-C3-C8	120.83 (14)	Co1-C1-C16	134.95 (12)
C3-C8-C9	114.39 (14)	Co2-C1-C16	127.31 (12)
C8-C9-C10	155.98 (18)	C2-C1-C16	147.67 (16)
Co1-Co2-C1	50.92 (5)	C10-C11-C16	113.79 (14)
C7-C8-C3	120.59 (15)	C1-C16-C11	121.30 (14)
C9-C10-C11	156.41 (18)	C8-C3-C4	118.17 (14)
$\mathrm{Co} 1-\mathrm{C} 1-\mathrm{C} 2$	70.0 (1)		
C1-C2-C3-C8	11.0 (6)	$\mathrm{Co} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	154.1 (4)
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	-7.2 (7)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-122.5 (4)
C16-C1-C2-C3	7.9 (7)	Co1-C1-C16-C15	33.3 (3)
C8-C9-C10-C11	3.0 (10)	Co2-C1-C16-C15	-79.0 (2)

The H atoms were located from difference density maps and refined isotropically with restraints, $\mathrm{C}-\mathrm{H} 0.968$ (3)-1.079 (3) \AA.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Rigaku, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Molecular Structure Corporation and Rigaku Corporation, 2001).

Financial support from the New Energy and Industrial Technology Development Organization (NEDO) of Japan for Industrial Technology Research Grant Program (01B68006d) to AO is gratefully acknowledged.

References

Altomare A., Burla M. C., Camalli M., Cascarano G. L., Giacovazzo C., Guagliardi A., Moliterni A. G. G., Polidori G. \& Spagna R. (1999). J. Appl. Cryst. 32, 115-173.
Destro, R., Pilati, T. \& Simonetta, M. (1975). J. Am. Chem. Soc. 97, 658-659. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.
Gregson, D. \& Howard, J. A. K. (1983). Acta Cryst. C39, 1024-1027.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, 3-9-12 Akishim, Tokyo, Japan.
Molecular Structure Corporation and Rigaku Corporation (2001). CrystalStructure. Version 2.00. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Orita, A., Jiang, L., Ye, F., Imai, N., Akashi, H. \& Otera, J. (2002). Acta Cryst. E58, m681-m683.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Rigaku (1999). TEXSAN. Version 1.10. Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shimada, S., Tanaka, M. \& Honda, K. (1997). Inorg. Chim. Acta, 265, 1-8.

